Time-frequency detection of gravitational waves
نویسندگان
چکیده
We present a time-frequency method to detect gravitational wave signals in interferometric data. This robust method can detect signals from poorly modeled and unmodeled sources. We evaluate the method on simulated data containing noise and signal components. The noise component approximates initial Laser Interferometric Gravitational Wave Observatory ~LIGO! interferometer noise. The signal components have the time and frequency characteristics postulated by Flanagan and Hughes for binary black hole coalescence. The signals correspond to binaries with total masses between 45M ( to 70M ( and with ~optimal filter! signal-to-noise ratios of 7 to 12. The method is implementable in real time, and achieves a coincident false alarm rate for two detectors '1 per 475 years. At this false alarm rate, the single detector false dismissal rate for our signal model is as low as 5.3% at a signal-to-noise ratio of 10. We expect to obtain similar or better detection rates with this method for any signal of similar power that satisfies certain adiabaticity criteria. Because optimal filtering requires knowledge of the signal waveform to high precision, we argue that this method is likely to detect signals that are undetectable by optimal filtering, which is at present the best developed detection method for transient sources of gravitational waves. @S0556-2821~99!00622-0#
منابع مشابه
Application of the Hilbert-Huang Transform to the Search for Gravitational Waves
We present the application of a novel method of time-series analysis, the Hilbert-Huang Transform, to the search for gravitational waves. This algorithm is adaptive and does not impose a basis set on the data, and thus the time-frequency decomposition it provides is not limited by time-frequency uncertainty spreading. Because of its high time-frequency resolution it has important applications t...
متن کاملA Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves
Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...
متن کاملApplication of the Hilbert - Huang Transform to the Search for Gravitational PJaves
We present the application of a novel method of time-series analysis, the Hilbert-Huang Transform, to the search for gravitational waves. This algorithm is adaptive and does not impose a basis set on the data, and thus the time-frequency decomposition it provides is not limited by time-frequency uncertainty spreading. Because of its high time-frequency resolution it has important applications t...
متن کاملA Review of Gravitational Waves from Cosmic Domain Walls
In this contribution, we discuss the cosmological scenario where unstable domain walls are formed in the early universe and their late-time annihilation produces a significant amount of gravitational waves. After describing cosmological constraints on long-lived domain walls, we estimate the typical amplitude and frequency of gravitational waves observed today. We also review possible extension...
متن کاملGravitational Wave Astrophysics: Opening the New Frontier
The gravitational wave window onto the universe is expected to open in ~ 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999